

nuPIL (neutrinos from PIon beam Line)

JB. Lagrange^(1,2), A. Bross⁽²⁾, A. Liu⁽²⁾, J. Pasternak⁽¹⁾

(1): Imperial College, UK

(2): FNAL, USA

Outline

Motivation & Concept

Design

Preliminary results

Going further

Summary & future plans

Outline

Motivation & Concept

Design

- Preliminary results
- Going further

Summary & future plans

Motivation

(LBNF Letter of Intent, Jan 2015)

Decay pipe:

- 6 (4?) m diameter,
- filled with Helium,
- 7 m of concrete around the pipe to shield it.

20 m diameter tunnel!

Neutrino Flux at DUNE

(CDR-Physics Volume)

Inevitable background from wrong-sign particles decay (DUNE detector not magnetized: rely on high-resolution imaging to statistically discriminate neutrinos from anti-neutrinos.)

General Concept

Pion beam line

- clean, well known flux
- smaller tunnel (conventional pion beam line)
- Detector does not need to be magnetised

nuPIL (Neutrinos from PIon beam Line)

General Parameters

- \bigcirc Pions 7 GeV/c \pm 50%
- Normal conducting range (KEK radiation hard coils)
- C-shape magnet

Outline

Motivation & Concept

Preliminary results

Going further

Summary & future plans

First design concept

FFAG accelerator

FIXED FIELD ALTERNATING GRADIENT

It combines

a static guide field like cyclotrons:

AND

a strong focusing.like synchrotrons:

Zero-chromatic FFAG

Advantages:

- stable optics for <u>very large momentum spread</u>.
- allows a good working point with a <u>large acceptance</u> far from harmful resonances.

Quasi-zero beam loss!

Second design concept

Third design concept

Outline

Motivation & Concept

Design

Preliminary results

Going further

Summary & future plans

Preliminary results

No optimization yet

FODO beam line

Total length 240 m.

Tracked in G4BL.

FODO beam line Beam optics

FODO beam line Flux

- Pions trajectories 3.5 GeV/c & 10.5 GeV/c
- Bmax < 1.7 T, excursion < 67 cm.</p>
- k-value = 1988, r_{av} = 496.5 m, $L_{beam line}$ = 50 m.

Magnetic field for P_{max} (10.5 GeV/c)

Dispersion function

Multi-particle tracking without dispersion matching. 10000 particles with a Waterbag distribution. Unnormalized emittances are $2000 \pi \text{ mm.mrad}$ in transverse planes. Momentum uniformly distributed around $7 \text{ GeV/c} \pm 50\%$.

Results in the vertical (left) and horizontal (right) phase spaces

Survival: 80%

Momentum range at the injection (blue) and for the surviving particles (red) after tracking.

Results in the horizontal (top) and vertical (bottom) phase spaces

JB Lagrange - nuFACT'15 - August 2015

Wrong Sign Survival

~1.1 10⁶ particles (distribution from the horn)

2.38% survival

Surviving particles in vertical (left) and horizontal (right) phase spaces

JB Lagrange - nuFACT'15 - August 2015

Wrong Sign Survival

~1.1 10⁶ particles (distribution from the horn)

2.38% survival

Momentum range at the injection (blue) and for the surviving particles (red) after tracking.

Outline

Motivation & Concept

Design

Preliminary results

Going further

Summary & future plans

Going even further...

nuPIL AND nuSTORM?

The wrong-sign pions could be used for Short Baseline experiments (i.e. nuSTORM).

nuPIL AND nuSTORM?

The wrong-sign pions could be used for Short Baseline experiments (i.e. nuSTORM).

Let's be greedy...

Muon cooling experiment (C. Rubbia's ring) could also be implemented!

Let's be greedy...

Muon cooling experiment (C. Rubbia's ring) could also be implemented!

Outline

Motivation & Concept

Design

Preliminary results

Going further

Summary & future plans

Summary

- Pion beam line has good potential for LB scenario.
 - Clean beam,
 - Well known beam,
 - Comparable flux at 3 GeV for the FODO solution (but drops sharply when energy goes off-peak)
- Different possible designs are investigated.
 - FODO design,
 - Double achromat FFAG and quadrupoles,
 - Single achromat FFAG, straight FFAG dispersion, suppressor and quadrupoles.

Summary

- Preliminary results not too bad, but need improvements.
- Large potential for combined experiments: LB, SB and muon cooling ring demonstration
 - nuPIL 1PIL
 - nuSTORM

muon cooling ring

Future plans

© Compute the flux from the second design.

Third design concept to be implemented.

- Optimization for all designs, and compare them regarding the final flux at the detector.
- Investigate beam optics for nuSTORM facility.

Thank you for your attention